Terraform Provider

The ChatBotKit Terraform Provider enables you to manage your AI chatbot infrastructure using Terraform. Define bots, datasets, skillsets, integrations, and more through declarative configuration files, enabling version control, automated deployments, and infrastructure consistency across environments.

Key Features

  • Infrastructure as Code: Manage ChatBotKit resources declaratively
  • Full Resource Coverage: Support for bots, datasets, skillsets, integrations, and more
  • Data Sources: Read existing resources for reference in configurations
  • Import Support: Bring existing resources under Terraform management
  • State Management: Track resource changes and drift detection
  • CI/CD Integration: Automate deployments through pipelines

Installation

From Terraform Registry

Add the provider to your Terraform configuration:

terraform { required_providers { chatbotkit = { source = "chatbotkit/chatbotkit" version = "~> 1.0" } } } provider "chatbotkit" { # API key can be set here or via CHATBOTKIT_API_KEY env var }

hcl

Then initialize Terraform:

terraform init

bash

Requirements

  • Terraform 1.0 or higher
  • A ChatBotKit API key from the Dashboard

Authentication

Configure authentication using either method:

Environment Variable (Recommended for CI/CD):

export CHATBOTKIT_API_KEY="your-api-key"

bash

Provider Configuration:

provider "chatbotkit" { api_key = var.chatbotkit_api_key } variable "chatbotkit_api_key" { type = string sensitive = true }

hcl

Quick Start

Here's a complete example that creates a knowledge-based support bot:

terraform { required_providers { chatbotkit = { source = "chatbotkit/chatbotkit" version = "~> 1.0" } } } provider "chatbotkit" {} # Create a knowledge base resource "chatbotkit_dataset" "knowledge" { name = "Product Knowledge Base" description = "Contains product documentation and FAQs" } # Create a skillset for tools resource "chatbotkit_skillset" "tools" { name = "Support Tools" description = "Tools for customer support operations" } # Add an ability to the skillset resource "chatbotkit_skillset_ability" "ticket_lookup" { skillset_id = chatbotkit_skillset.tools.id name = "lookup_ticket" description = "Look up a support ticket by ID" instruction = "Use this to find ticket details when a customer asks about their ticket status." } # Create the bot resource "chatbotkit_bot" "support" { name = "Customer Support Bot" description = "Handles customer inquiries" backstory = "You are a helpful customer support agent for our company. Be friendly, professional, and always try to resolve issues on the first interaction." model = "gpt-4" dataset_id = chatbotkit_dataset.knowledge.id skillset_id = chatbotkit_skillset.tools.id moderation = true privacy = true } # Deploy to Slack resource "chatbotkit_slack_integration" "support_slack" { name = "Support Slack Bot" bot_id = chatbotkit_bot.support.id } # Output the bot ID output "bot_id" { value = chatbotkit_bot.support.id }

hcl

Deploy with:

terraform plan # Preview changes terraform apply # Apply changes

bash

Resources

The provider supports the following resources for creating and managing ChatBotKit entities:

Core Resources

ResourceDescription
chatbotkit_botAI chatbot agents with configurable models and behaviors
chatbotkit_datasetKnowledge bases for retrieval-augmented generation
chatbotkit_skillsetCollections of abilities (tools) for bots
chatbotkit_skillset_abilityIndividual abilities within a skillset
chatbotkit_blueprintReusable templates for bot configurations
chatbotkit_secretSecure credential storage
chatbotkit_fileFile uploads for datasets and other uses
chatbotkit_portalCustomer-facing portal configurations

Integration Resources

ResourceDescription
chatbotkit_discord_integrationDiscord bot deployment
chatbotkit_slack_integrationSlack workspace integration
chatbotkit_telegram_integrationTelegram bot deployment
chatbotkit_whatsapp_integrationWhatsApp Business integration
chatbotkit_messenger_integrationFacebook Messenger integration
chatbotkit_email_integrationEmail-based interactions
chatbotkit_twilio_integrationTwilio SMS/voice integration
chatbotkit_widget_integrationEmbeddable chat widget
chatbotkit_notion_integrationNotion workspace sync
chatbotkit_sitemap_integrationWebsite content ingestion
chatbotkit_trigger_integrationEvent-based triggers
chatbotkit_extract_integrationData extraction pipelines
chatbotkit_mcpserver_integrationMCP server connections

Data Sources

Read existing resources without managing them:

# Reference an existing bot data "chatbotkit_bot" "existing" { id = "bot_abc123" } # Use its properties output "existing_bot_name" { value = data.chatbotkit_bot.existing.name }

hcl

Available data sources:

  • chatbotkit_bot
  • chatbotkit_dataset
  • chatbotkit_blueprint
  • chatbotkit_skillset

Resource Examples

Bot with Full Configuration

resource "chatbotkit_bot" "advanced" { name = "Enterprise Assistant" description = "Multi-purpose enterprise bot" backstory = <<-EOT You are an enterprise assistant with access to company knowledge and various tools. Always be professional and helpful. Key guidelines: - Verify user identity for sensitive operations - Escalate complex issues to human agents - Log all significant interactions EOT model = "gpt-4" dataset_id = chatbotkit_dataset.knowledge.id skillset_id = chatbotkit_skillset.tools.id moderation = true privacy = true visibility = "private" meta = { environment = "production" team = "customer-success" version = "2.0" } }

hcl

Dataset with Records

resource "chatbotkit_dataset" "faq" { name = "FAQ Database" description = "Frequently asked questions" meta = { source = "zendesk" sync_daily = "true" } }

hcl

Skillset with Multiple Abilities

resource "chatbotkit_skillset" "crm_tools" { name = "CRM Tools" description = "Customer relationship management tools" } resource "chatbotkit_skillset_ability" "create_ticket" { skillset_id = chatbotkit_skillset.crm_tools.id name = "create_support_ticket" description = "Create a new support ticket" instruction = "Use this when a customer needs to file a new support request." } resource "chatbotkit_skillset_ability" "update_contact" { skillset_id = chatbotkit_skillset.crm_tools.id name = "update_contact_info" description = "Update customer contact information" instruction = "Use this when a customer wants to update their email, phone, or address." }

hcl

Multi-Channel Deployment

resource "chatbotkit_bot" "omnichannel" { name = "Omnichannel Support" backstory = "You are a support agent available across all channels." model = "gpt-4" } resource "chatbotkit_slack_integration" "slack" { name = "Slack Support" bot_id = chatbotkit_bot.omnichannel.id } resource "chatbotkit_discord_integration" "discord" { name = "Discord Support" bot_id = chatbotkit_bot.omnichannel.id } resource "chatbotkit_telegram_integration" "telegram" { name = "Telegram Support" bot_id = chatbotkit_bot.omnichannel.id }

hcl

Importing Existing Resources

Bring existing resources under Terraform management:

# Import a bot terraform import chatbotkit_bot.my_bot bot_abc123def456 # Import a dataset terraform import chatbotkit_dataset.my_dataset dataset_xyz789 # Import an integration terraform import chatbotkit_slack_integration.my_slack slack_integration_123

bash

After importing, add the resource to your configuration to prevent Terraform from trying to delete it.

State Management

Remote State

For team collaboration, use remote state backends:

terraform { backend "s3" { bucket = "my-terraform-state" key = "chatbotkit/terraform.tfstate" region = "us-east-1" } }

hcl

Workspaces

Manage multiple environments with workspaces:

terraform workspace new staging terraform workspace new production terraform workspace select production

bash

resource "chatbotkit_bot" "support" { name = "Support Bot - ${terraform.workspace}" # ... other configuration }

hcl

CI/CD Integration

GitHub Actions Example

name: Deploy ChatBotKit Infrastructure on: push: branches: [main] paths: ['terraform/**'] jobs: deploy: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: hashicorp/setup-terraform@v3 with: terraform_version: 1.6.0 - name: Terraform Init run: terraform init working-directory: terraform - name: Terraform Plan run: terraform plan -out=tfplan working-directory: terraform env: CHATBOTKIT_API_KEY: ${{ secrets.CHATBOTKIT_API_KEY }} - name: Terraform Apply run: terraform apply -auto-approve tfplan working-directory: terraform env: CHATBOTKIT_API_KEY: ${{ secrets.CHATBOTKIT_API_KEY }}

yaml

Best Practices

Use Variables for Reusability

variable "environment" { type = string default = "development" } variable "bot_model" { type = string default = "gpt-4" } resource "chatbotkit_bot" "support" { name = "Support Bot - ${var.environment}" model = var.bot_model }

hcl

Organize with Modules

terraform/ ├── main.tf ├── variables.tf ├── outputs.tf └── modules/ ├── support-bot/ │ ├── main.tf │ ├── variables.tf │ └── outputs.tf └── sales-bot/ └── ...

Use Lifecycle Rules

resource "chatbotkit_bot" "critical" { name = "Critical Production Bot" lifecycle { prevent_destroy = true } }

hcl

Tag Resources with Metadata

locals { common_meta = { managed_by = "terraform" environment = var.environment team = var.team } } resource "chatbotkit_bot" "support" { name = "Support Bot" meta = local.common_meta }

hcl

Troubleshooting

Common Issues

Authentication Errors:

Error: 401 Unauthorized

Verify your API key is set correctly via environment variable or provider configuration.

Resource Not Found:

Error: Resource not found

The resource may have been deleted outside of Terraform. Remove it from state with:

terraform state rm chatbotkit_bot.my_bot

bash

State Drift:

~ resource "chatbotkit_bot" "support" { ~ name = "Old Name" -> "New Name" }

Someone modified the resource outside Terraform. Run terraform apply to reconcile or update your configuration to match.

Debug Logging

Enable detailed logging:

export TF_LOG=DEBUG terraform plan

bash

Additional Resources